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Abstract. We report the bulk and surface properties of lithium computed within a full-potential
linear combination of Gaussian-type orbitals formalism using both density functional theory and the
Hartree–Fock approximation. We examine the convergence of computed properties with respect to
numerical approximations and also explore the use of finite-temperature density functional theory.
We demonstrate that fully converged calculations reproduce cohesive properties, elastic constants,
band structure, and surface energies in full agreement with experimental data and, where available,
previous calculations.

1. Introduction

Lithium has been the subject of considerable interest over many years. Although its electronic
structure is relatively simple, its structural properties still pose a significant challenge to both
experiment [1–3] and simulation [4–15]. Lithium is very soft; the determination of its elastic
constants and surface energies requires experiments of high accuracy and simulations of high
numerical stability. The calculation of surface formation energies is particularly delicate as
has been discussed recently [16,17].

The aim of this article is to present a comprehensive and systematic study of the band
structure, cohesive energy, elastic constants, phase stability, and surface energies of lithium.
Very few systematic studies of the dependence of results on the computational parameters
are available. This however is especially important when energy differences are required as
for example in calculation of surface energies or phase stabilities. We present the results
of fully converged, full-potential, all-electron calculations based on both density functional
theory and the Hartree–Fock approximation. We examine the use of finite-temperature density
functional theory as a technique for accelerating convergence with respect to reciprocal-space
sampling. We expand the crystalline orbitals as a linear combination of Gaussian-type orbitals
(LCGTO). This approach is very well established for insulators [18, 19]. We find, in accord
with a recent study of magnesium [20], that this approach is also well suited to the simulation
of a free-electron metal.

The paper is organized as follows. In section 2, we discuss the computational parameters.
In sections 3 and 4, we discuss results for lithium bulk and surfaces, respectively, and summarize
our conclusions in section 5.

2. Basis set and method

All of the calculations were performed with the program package CRYSTAL [21]. The main
numerical approximation in our approach is the choice of the Gaussian basis set. The difficulties
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of selecting basis sets for metallic systems have been explored in previous studies [22, 23].
In principle the quality of a calculation can be systematically improved by adding additional
functions to the basis set and optimizing their exponents in a suitable reference state—usually
the bulk crystal. In practice one must balance the overcompleteness of the basis set, which
leads to linear dependence, with the need for additional variation freedom. For molecular
systems and insulating solids these problems have largely been overcome and Gaussian basis
sets are very widely used. For metallic systems and their surfaces in particular there have been
very few systematic studies.

In a solid the tails of the atom-centred functions overlap strongly and so diffuse basis
functions optimized for the description of atomic or molecular systems are not useful and
indeed may give rise to linear dependence. We are thus unable to simply use basis sets from
the many libraries developed for the description of molecular systems. We have therefore
developed a hierarchy of basis sets of increasing quality in order to examine the convergence
of computed properties.

The smallest basis set used has three s-symmetry functions and two p-symmetry functions
and is denoted as [3s2p]. The [1s] radial function was taken from reference [24]. The
exponents of the two additional sp shells were optimized in local density approximation
(LDA) calculations (with Dirac–Slater exchange [25] and the Perdew–Zunger correlation
functional [26]) for the solid at the experimental lattice constant. The lowest energy was
obtained with exponents of 0.50 and 0.08. Similar results were obtained when using the
Perdew–Wang gradient-corrected approximation (PWGGA) [4]. However, as an exponent of
0.08 gives rise to a very diffuse basis function close to numerical instability, instead exponents
of 0.50 and 0.10 were chosen. This [3s2p] basis set is very robust and computationally
efficient—it does not give rise to linear dependence even when the bulk is strongly distorted
(for example, to determine the elastic constants).

A [4s3p] basis set was obtained by using three exponents (0.50, 0.20, and 0.08)—which
were chosen to be ‘even tempered’, i.e. the ratio between the exponents is kept fixed (2.5 in
this case). This ratio is close to the lowest which can be tolerated before on-site (atomic) linear
dependence is seen. It is however also known to converge the atomic energy to within less than
10−4 Eh (Eh = 27.2114 eV) of the exact Hartree–Fock ground-state energy (see the analysis
in reference [27]). Finally, an additional polarization function of d symmetry was added and
the exponent optimized within a PWGGA calculation to be 0.15. However, the d function
leads only to a minor change in the total energy. The energy varies only by 5×10−5 Eh when,
e.g., changing the exponent to 0.5. The basis sets developed in this manner are displayed in
table 1.

Both at the Hartree–Fock (HF) and B3LYP [28] (involving a hybrid of Fock exchange
and a modification of the Becke gradient-corrected exchange functional [29, 30], and the
Vosko–Wilk–Nusair local correlation functionalV [31] and the gradient-corrected correlation
potential given by Lee, Yang, and Parr [32]) levels, an optimization of basis set exponents was
not possible. Instead, the outermost exponent became more and more diffuse until finally the
solution became unstable. This is a well known pathology of the use of Fock exchange in
metallic systems (see also the discussion in reference [23]). When features of the HF solution
are discussed in this article, they were obtained with the [3s2p] basis set (outermost exponents:
0.50 and 0.10).

In order to compute binding energies the free atom is calculated within a spin-polarized
formalism with the same [1s] function but with additional s exponents 0.60, 0.24, 0.096, 0.04,
and 0.016 to describe the long-range behaviour of the atomic wavefunction.

For the LDA and PWGGA calculations we also expand the exchange and correlation
potentials in an auxiliary Gaussian basis set which consists of thirteen even-tempered
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Table 1. Basis sets.

Exponent s contraction p contraction d contraction

[1s] 840.0 0.00264
217.5 0.00850
72.3 0.0335
19.66 0.1824
5.044 0.6379
1.5 1.0

[3s2p]
[2sp] 0.50 1.0 1.0
[3sp] 0.10 1.0 1.0

[4s3p] and [4s3p1d]
[2sp] 0.50 1.0 1.0
[3sp] 0.20 1.0 1.0
[4sp] 0.08 1.0 1.0
[d] 0.15 1.0

s functions with exponents from 0.1 to 2000, three even-tempered p functions with exponents
from 0.1 to 0.8, and two d functions with exponents of 0.12 and 0.3. This is sufficient for
integrating the charge density to an accuracy of 10−7 |e|. For the free atom, we use an
auxiliary basis set with 18 even-tempered s functions with exponents from 0.0037 to 4565.

Reciprocal-space sampling is a delicate problem especially for metals. The sampling
is performed on a Pack–Monkhorst net [33] where the density of points is determined by a
shrinking factor. The Fermi energy and shape of the Fermi surface are determined by inter-
polation onto a ‘Gilat’ net. This net is simply related to the Pack–Monkhorst net by an
additional subdivision factor. To further improve convergence, the finite-temperature general-
ization of density functional theory [34] can be used to apply Fermi surface smearing [35]. In
table 2, the dependence of the total energy on the density of points in the Pack–Monkhorst net
is displayed. For this purpose, PWGGA calculations on a body-centred-cubic (bcc) lattice at
the equilibrium lattice constant of 3.44 Å were performed.

At zero temperature, even with the largest net used, the energy is still slightly decreasing
as more points are used. For a smearing of 0.001Eh (which corresponds to a temperature
of T = 0.001Eh/kB = 316 K with Boltzmann’s constantkB = 3.1667× 10−6 Eh K−1),
the energy is stable up to a fewµEh. A higher number of sampling points in the Gilat net
leads to a systematic improvement at zero temperature. At finite temperature, the number of
sampling points in the Gilat net does not influence the results when a sufficiently high number
of points in the Pack–Monkhorst net is chosen. As shown in table 2, the difference in energy
for the different numbers of sampling points in the Gilat net is of the order of only a fewµEh
for a fixed shrinking factor of 24 in the Pack–Monkhorst net. Note that for the densest net at
kBT = 0.001Eh, the difference in energy between smeared and unsmeared results is less that
10−4 Eh. At an even higher temperature of 0.02Eh, the energy converges to a value which is
6 mEh higher than at 0.001Eh. An estimate of the zero-temperature energy can be obtained
by using the approximationE(0 K) = 1

2(E(T ) + F(T )) (with F = E − T S being the free
energy, and exploiting the fact that the energy increases quadratically with temperature for low
temperature) as suggested in reference [36]. The electronic entropyS is defined as

S = kB
Nstates∑
i

fi ln fi + (1− fi) ln(1− fi)
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Table 2. Convergence of the total energy with respect to the number of sampling points. The
results are obtained from PWGGA calculations with a [3s2p] basis set, for the bcc lattice at a lattice
constant of 3.44 Å and for three temperatures 0Eh, 0.001Eh, and 0.02Eh.

Shrinking factor of the Gilat net
Number of in multiples of the shrinking factor

Shrinking sampling points in the of the Pack–Monkhorst net
factor of the irreducible part of the
Pack–Monkhorst net Pack–Monkhorst net 1 2 3 4

kBT = 0Eh;E(T ) = E(0)
4 8 −7.520822 −7.520213 −7.520284 −7.520373
8 29 −7.527049 −7.529923 −7.530344 −7.530488

12 72 −7.528987 −7.529867 −7.530023 −7.530075
16 145 −7.529574 −7.530032 −7.530125
18 195 −7.529697 −7.530077
20 256 −7.529796 −7.530101
24 413 −7.529915 −7.530130

kBT = 0.001Eh;E(T )
4 8 −7.524523 −7.522697 −7.521528 −7.521029
8 29 −7.529710 −7.530632 −7.530634 −7.530654

12 72 −7.529982 −7.530156 −7.530141 −7.530128
16 145 −7.530175 −7.530183 −7.530181
18 195 −7.530195 −7.530189
20 256 −7.530185 −7.530188
24 413 −7.530200 −7.530185

kBT = 0.001Eh;
E(0) = 1

2(E(T ) + F(T ))

4 8 −7.524782 −7.522773 −7.521551 −7.521064
8 29 −7.529759 −7.530653 −7.530658 −7.530674

12 72 −7.530024 −7.530175 −7.530161 −7.530150
16 145 −7.530203 −7.530204 −7.530201
18 195 −7.530218 −7.530211
20 256 −7.530208 −7.530210
24 413 −7.530220 −7.530205

kBT = 0.02Eh;E(T )
4 8 −7.521660 −7.516254 −7.515090 −7.514714
8 29 −7.523669 −7.524181 −7.524207 −7.524218

12 72 −7.523698 −7.523670 −7.523664 −7.523661
16 145 −7.523697 −7.523689 −7.523687
18 195 −7.523697 −7.523701
20 256 −7.523697 −7.523701
24 413 −7.523697 −7.523698

kBT = 0.02Eh;
E(0) = 1

2(E(T ) + F(T ))

4 8 −7.529537 −7.524058 −7.522959 −7.522615
8 29 −7.530824 −7.531214 −7.531234 −7.531242

12 72 −7.530840 −7.530824 −7.530820 −7.530818
16 145 −7.530840 −7.530833 −7.530831
18 195 −7.530840 −7.530842
20 256 −7.530840 −7.530843
24 413 −7.530840 −7.530840
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with fi being the Fermi function. This leads to a value ofE(0) extrapolated fromkBT =
0.02 Eh which deviates by less than 10−3 Eh from the value obtained at a temperature of
0.001Eh. The functionsE(T ), F(T ), and1

2(E(T ) +F(T )) for a fixed value of 145 sampling
points (corresponding to a shrinking factor of 16 in the Pack–Monkhorst net) are also displayed
in figure 1. Indeed, even for relatively high temperature,E(0) is well approximated by
1
2(E(T ) + F(T )).
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Figure 1. EnergyE(T ), free energyF(T ), and1
2(E(T )+F(T )) for Li bulk; bcc lattice. A shrinking

factor of 16 was used.

In conclusion, as we need a high accuracy for the energy difference between the different
phases of Li, we chose for the calculations on lithium bulk a shrinking factor of 16 for the
Pack–Monkhorst net and a temperature of 0.001Eh. This ensures that convergence of the
energy to at least 10−4 Eh with respect to reciprocal-space sampling is achieved.

3. Results for bulk lithium

3.1. Band structure

In figure 2 the LDA band structure for the bcc structure is displayed. The occupied bands and the
lower unoccupied bands are in excellent agreement with results obtained earlier with Gaussian
basis sets and Xα exchange [37], by the Kohn–Korringa–Rostoker (KKR) method [38] and
Slater exchange, augmented-plane-wave (APW) [39] and modified APW (MAPW) [15]
calculations both using LDA, or linear muffin-tin orbital (LMTO) calculations [40] with a
combination of exchange using the Langreth and Mehl functional [41] and LDA correlation.
When using PWGGA instead of LDA, the band structure does not exhibit major differences.
The experimentally known conduction bandwidth (∼4 eV) [42] is slightly lower than the result
calculated here (4.6 eV). The slow decay of the density matrix in metals leads to difficulties
when Fock exchange is involved: the summation of the exchange series in direct space is very
long ranged and is truncated at a large but finite distance. This cut-off for large distances
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Figure 2. LDA band structure at the equilibrium lattice constant; bcc lattice.

in direct space results in numerical instabilities for smallEk. Thus, both in the Hartree–Fock
and B3LYP band structures, artificial oscillations can be found around the Gamma point. As
usual for Hartree–Fock calculations, we find that the bandwidth is roughly twice as large as
the experimental bandwidth.

3.2. Cohesive properties

Table 3 gives results for ground-state properties of bcc Li (lattice constant, bulk modulus,
cohesive energy, and elastic constantsC11, C11− C12, andC44). The elastic constants were
obtained by applying a rhombohedral distortion forC44, a tetragonal distortion forC11, and
an orthorhombic distortion forC11 − C12 to the solid at the equilibrium lattice constant.
Cohesive energy and lattice constant agree well with experiment and depend only weakly on
the basis set. The bulk modulus is obtained from the energy as a function of volume and
agrees within the accuracy of the fit with that obtained using the relationB = 1

3(C11 + 2C12).
Elastic constants have a strong dependence on the basis set and the deviation from experiment
improves especially when going from [3s2p] to [4s3p]; the d function has only a minor impact
on the results. We find that PWGGA is closer to experiment with results similar to reference [4].

3.3. Relative stabilities

The experimental crystal structure of lithium at zero temperature is still unclear (at room
temperature a bcc structure is favoured). Both face-centred-cubic (fcc) and hexagonal (hex)
structures have been suggested as well as more sophisticated structures such as 9R (a nine-layer
sequence of close-packed planes ABCBCACAB) [43] or mixtures of these phases. Therefore,
we also investigated the relative stability of the different phases. In figure 3, total energies
of the bcc, fcc, and hex phases, obtained with the PWGGA functional and the best basis set
([4s3p1d]), are displayed.
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Table 3. Ground-state properties of lithium. Energies are inEh, lattice constants in Å, elastic
constants in GPa. The acronyms are: FP-LAPW: full-potential linear augmented plane wave;
RSK: Rajaporal–Singhal–Kimball; KSG: Kohn–Sham–Gaspar; HL: Hedin–Lundquist; and QMC:
quantum Monte Carlo.

a Ecoh B C44 C11 C11− C12

LDA ([3s2p]) 3.37 0.066 16 13 18 3.2
LDA ([4s3p]) 3.40 0.066
PWGGA ([3s2p]) 3.44 0.059 14 12 17 3.4
PWGGA ([4s3p]) 3.46 0.059 12 12 13 3.5
PWGGA ([4s3p1d]) 3.46 0.059 11 12 13 3.3
HF 3.65 0.020 12

Literature (LDA; PWGGA, FP-LAPW) [4] 3.37; 3.44 15.0; 13.4
Literature (LDA, FP-LAPW) [7] 3.36 15.4 17 2.3
Literature (LDA, Gaussian basis) [45] 3.45 0.062 13.8
Literature (LDA, plane-wave basis) [5] 3.44 13.5
Literature (LDA, plane-wave basis) [8] 3.40 13.0
Literature (LDA, Gaussian basis, 3.49 0.044 14.7

KSG model) [9]
Literature (LDA, Gaussian basis, 3.36 0.062 —

HL model) [9]
Literature (LDA, Gaussian basis, 3.34 0.068 15.8

RSK model) [9]
Literature (LDA, HL) [46] 3.39 0.061 14.8
Literature (MAPW) [15] 3.33 0.074 15.6
Literature (HF) [23] 0.010∗

Literature (HF) [47] 3.65 0.022 14
Literature (QMC) [47] 3.56 0.058 13
Literature (localansatz) [48] 3.56 0.057 12
Experiment 3.48 [49] 0.061 [50] 13.0 [51] 11.6 [51] 14.5 [51] 2.4 [51]

∗ Estimated HF limit: 0.019.

The c/a ratio of the hexagonal phase remains close to the ideal close-packed value of
1.633 (it varies between 1.631 and 1.635 which is within the accuracy of the fit). Although
it is reasonable to conclude that the close-packed structures are lower in energy than the bcc
structure it is not possible to resolve the difference in energy between the fcc and hex phases.
The variation of the energy with basis set is given in table 4. As the basis set is systematically
improved the energy difference between the bcc and fcc structures increases from 1×10−5 Eh
to 4× 10−5 Eh, and that between the bcc and hex structures decreases from 7× 10−5 Eh to
4× 10−5 Eh. We note that even the d function influences this energy splitting. These results,
which do not include the zero-point energy, indicate a preference for close-packed structures
which is in agreement with most of the previous calculations [4–14] except for one [15] (see
table 4).

HF calculations were only possible with the smallest [3s2p] basis set where the order of
phases is different with hcp being the lowest in energy, followed by bcc, and fcc being highest.
The same is found in LDA with the smallest [3s2p] basis set, but changes when the basis set
is increased to [4s3p] where both fcc and hcp structures are 2× 10−4 Eh lower in energy than
bcc structure (again, calculations with the best [4s3p1d] basis set were not possible because
of linear dependence)—see table 4.

As the energy splitting between the close-packed and bcc phases is rather small, the zero-
point energy difference cannot be neglected. The first published calculation of this, based on
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Figure 3. Relative stabilities of the different phases as a function of the volume; [4s3p1d] basis.

the harmonic approximation [5], gave an additional stabilization of 9× 10−5 Eh of the fcc
phase compared to the bcc phase. In these calculations however the hcp phase was found to
be higher in energy than the bcc phase (table 4). Very recently, in a calculation also including
anharmonic effects, the stabilization was calculated to be about 1.5× 10−5 Eh both for fcc
and 9R phases relative to the bcc phase [6]. In addition, the authors computed the variation
of the vibrational free energy as a function of temperature and found a phase transition from
a closed-packed to a bcc phase at a temperature ofT ∼ 200 K.

4. Results for surfaces

A further test of this approach is the calculation of surface energies. We model lithium surfaces
by using a slab and varying the numbers of layers (a bcc structure is assumed). Surface energies
can be calculated in two ways, either by deriving a bulk energy by subtracting energies of two
slabs withn andm layers:

Esurface= 1

2

(
Eslab(n)− (Eslab(n)− Eslab(n−m)) n

m

)
(1)

which has the advantage of a systematic error cancellation (in particular, the reciprocal-space
sampling is consistent between the bulk and slab energies) or by using an independent bulk
energy

Esurface= 1

2
(Eslab(n)− Ebulkn). (2)

All of the quantitiesEsurface, Eslab(n), andEbulk are energies per atom.
In figure 4, results for surface energies obtained using both equation (1) (withm = 1) and

equation (2) are displayed. Equation (1) leads to relatively strong oscillations (the dotted curve
with plus signs) and becomes more stable with largerm. Numerical noise in the expression
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Table 4. Relative stability of the different phases of lithium. Energies are in mEh units per atom
relative to the bcc phase, lattice constants in Å, bulk moduli in GPa. For the 9R and hexagonal
structures the lattice constanta refers to the nearest-neighbour distance in the basal plane.

Phase a Ebcc− E B

fcc, HF ([3s2p]) 4.59 −0.08a 12
hcp, HF ([3s2p]) 3.24 0.18a 12
fcc, LDA ([3s2p]) 4.25 −0.02a 16
fcc, LDA ([4s3p]) 4.24 0.19a

hcp, LDA ([3s2p]) 3.00 0.08a 16
hcp, LDA ([4s3p]) 3.00 0.24a

fcc, PWGGA ([3s2p]) 4.33 0.01a 14
fcc, PWGGA ([4s3p]) 4.35 0.04a 12
fcc, PWGGA ([4s3p1d]) 4.36 0.04a 11
hex, PWGGA ([3s2p]) 3.06 0.07a 14
hex, PWGGA ([4s3p]) 3.08 0.06a 12
hex, PWGGA ([4s3p1d]) 3.08 0.04a 11

fcc, reference [4], LDA; PWGGA 4.23; 4.33 0.15; 0.14 15.5; 13.3
fcc, reference [6], LDA 4.28; 4.32b 0.073; 0.057b

hcp, reference [6], LDA 3.03 0.062
9R, reference [6], LDA 3.03; 3.06b 0.065; 0.050b

fcc, reference [7], FP-LAPW 4.23 0.08 15.2
fcc, reference [5], LDA 4.34 0.09; 0.18b 13.4
hcp, reference [5], LDA 3.09 −0.01 13.3
9R, reference [5], LDA 3.07 0.02 13.3
fcc, reference [8], LDA 4.28 0.1 13.8
hex, reference [8], LDA 3.02 0.33 13.7
fcc, reference [9], KSG model 4.38 0.25 18.7
fcc, reference [9], RSK model 4.20 0.45 16.8
fcc, reference [10], FP-LAPW 0.12
hcp, reference [10], FP-LAPW 0.16
fcc, reference [11], APW 4.21 1.4
fcc, reference [11], FP-LAPW 4.24 0.24
fcc, reference [12], LMTO 0.12
hcp, reference [12], LMTO 0.15
fcc, reference [15], MAPW 4.21 −0.13 12.0

a As explained in the text, the energy difference is so small that it can only be viewed as a tendency
towards close-packed systems. A statement about the preferred phase is not possible.
b Including zero-point motion.

(Eslab(n) − Eslab(n − m))n/m is reduced for larger values ofm. Equation (2), however,
leads at zero temperature to a slight linear decreasing of the surface energy as a function of
the number of layers (the thin curve without additional symbols). The reason for the non-
vanishing slope is that the energy differenceE(n) − E(n − 1) is not identical to the energy
of the bulk due to the systematic errors in the convergence of the total energy with respect
to reciprocal-lattice sampling (this was also emphasized in references [16, 17]). As shown in
table 2, at zero temperature the bulk energy is still changing by of the order of 10−4 Eh with
increasing sampling point number. Similarly the bulk energy varies when extracted from the
slab. This slight discrepancy gives rise to a variation of the surface energy with the number of
layers with a slope of 10−4 Eh per atom per layer.

The origin of the poor convergence with respect to reciprocal-lattice sampling is due to the
sharp cut-off imposed by the Fermi energy. One possibility for obtaining the surface energy
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Figure 4. (100) lithium surface energy with a shrinking factor of 24 in the Pack–Monkhorst net;
[3s2p] basis.

would be to use the intercept from a linear fit, but a better and simpler way to alleviate the
difficulties associated with reciprocal-lattice sampling is smearing the Fermi surface with a
finite temperature. Already at a temperature of 0.001Eh, the slope is virtually zero (the thick
curve without additional symbols). This is consistent with table 2, as the bulk energy converges
much faster at finite temperature. At a higher temperature ofkBT = 0.02Eh, E(T ) clearly
deviates fromE(0) (the thin curve with stars) and the approximationE(0) = 1

2(E(T )+F(T ))
should be applied. This works very well when comparing the corresponding results (the
thin curve with crosses) with results calculated atkBT = 0.001Eh (the thick curve without
additional symbols). The surface energy obtained in this way is only slightly higher than that
from a calculation atkBT = 0.001Eh which is consistent with figure 1.

A higher smearing temperature also reduces the oscillations in the curves when using
equation (1) or (2). It even allows one to substantially reduce the number of sampling points
as shown in figure 5. At low temperature, a high number of sampling points is necessary to
obtain the correct result, whereas at high temperature, already a shrinking factor of 4 (resulting
in six sampling points in the irreducible zone) is sufficient. It should be noted that in this case
we used equation (1), so all of the data are consistently extracted from calculations on slabs.

In conclusion, calculations at zero temperature are very cumbersome when results from
calculations on slabs and on the bulk have to be combined. The error cancellation can be
maximized by extracting the surface energy from calculations on slabs only. The problem of
error cancellation between bulk and slab is already improved at very low temperature when it is
possible to fully converge the bulk energy with respect to reciprocal-lattice sampling. Higher
temperature also leads to a smoother behaviour of the surface energy as a function of number
of layers. Finally, calculations at high temperature can be performed with a strong reduction
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Figure 5. (100) lithium surface energy with two different reciprocal-lattice samplings extracted
from two slabs with five and six layers using12(E(T ) + F(T )) and equation (1).

of the number of sampling points and usingE(0) = 1
2(E(T )+F(T )) as an approximation for

zero-temperature results as suggested in reference [36].
In table 5, LDA and PWGGA results for the unrelaxed (100), (110), and (111) surfaces

are summarized. The lattice constant was chosen as the bulk equilibrium lattice constant,
a temperature of 0.001Eh was chosen, and a higher shrinking factor of 24 resulting in 91
sampling points for the slabs and 413 sampling points for the bulk was used.

Table 5. Surface energies of (100), (110), and (111) surfaces, in units of mEh/a
2
Bohr;

1 mEh/a2
Bohr = 1.5567 J m−2.

PWGGA (3.44 Å)

Surface LDA (3.37 Å) [3s2p] [3s2p] [4s3p] [4s3p1d] Reference [16] (LDA, three layers, at 3.41 Å)

(100) 0.41 0.37 0.30 0.30 0.33
(110) 0.42 0.37 0.32 0.32 0.35
(111) 0.49 0.44 0.34 0.36 0.40

As found in reference [4] for the jellium model without additional long-range corrections,
surface energies in PWGGA are lower than in LDA (the different lattice constants for PWGGA
and LDA are not the reason; an evaluation at the LDA equilibrium lattice constant leads to a
change of the PWGGA surface energy which is negligible compared to the difference between
LDA and PWGGA surface energies). The energies are reduced when going from the smaller
[3s2p] to the [4s3p] basis set; introducing a d function leads only to minor changes. Our results
agree well with the literature [16,44].
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5. Conclusions

In this study of lithium metal, we presented accurate results using a full-potential, all-electron
density functional scheme. Results for cohesive properties, elastic constants, band structure,
and surface energies are in full agreement with experiment and calculated values from the
literature. The results in best agreement with experiment were obtained with the gradient-
corrected functional of Perdew and Wang. Hartree–Fock calculations for lithium are very
difficult as it is impossible to optimize the exponents because of the very long range of the
exchange interaction; the same problems appear in functionals involving an admixture of
Fock exchange. We demonstrated the convergence of the different properties with respect
to the computational parameters by using a hierarchy of basis sets, different reciprocal-
lattice samplings, and different smearing temperatures. We showed that finite-temperature
calculations can be used to improve convergence and still an extrapolation to zero temperature
is possible and accurate. Quantities like cohesive energy and lattice constant are already stable
with the smallest basis set; elastic constants and surface energies are more sensitive. The
most difficult quantity to calculate is the energy splitting between the different phases where
we have reached the limit of numerical accuracy. We cannot make a prediction about the
preferred crystal structure; the energy difference is so small that, from the computational point
of view, even subtle changes such as introducing a d function are important and zero-point
energies must be included [5, 6]. We confirm the finding of reference [20] that an approach
based on Gaussian-type functions provides a reliable and very efficient description of metallic
systems.
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